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Why does anyone care about grain growth?

* Grain-level microstructure
strongly influences a wide range
of materials properties

— Strength
e Hall-Petch relationship: O, =0,+
— Toughness and Fracture
— Corrosion resistance
— Electrical conductivity
— Magnetic susceptibility

e Controlling the microstructure
and relating the microstructure
to properties are central
problems in materials science.
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Evolution of grain microstructure is a highly
complex multi-scale modeling problem

e Atomic-scale

— Boundary properties are determined by atomic-scale structure and
dynamics
* Energy — changes in atomic-level bonding/coordination in the boundary
* Motion — local atomic-level rearrangements at the boundary

— Time-scale: picoseconds — nanoseconds
* Meso-scale
— G@Grain sizes: ~¥10 nanometers - 100 micrometers
— Need to consider the 3-D network of grain boundaries
— Time-scale: seconds to hours
 Conventional strategy

— Determine the properties of grain boundaries with atomic-scale methods

— Evolve the grain structure with meso-scale simulations that incorporate
the boundary properties — energy, mobility
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What is the big deal about determining grain
boundary properties?

 “We hold these truths to be self-evident, that all grain
boundaries are NOT created equa/, L - apologies to Thomas Jefferson

— There is a 5-dimensional space of macroscopic grain boundary structure

— The properties vary throughout this 5-D space in an, at best, partially
understood manner

— And this does NOT even consider the effects of temperature, alloying,
impurities, second phases, applied stress, ...

— For a given macroscopic configuration, multiple microscopic (atomic-level)
grain boundary structures may be present in equilibrium
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Grain Boundary Properties have been computed for a
large (388 sample) catalog of boundaries

Grain boundary energy in Foiles-Hoyt EAM Ni
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Misorientation is insufficient to determine grain
boundary energy
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» <111> twist boundaries are lowest
in energy and obey Read-Shockley
theory

» <100> twist boundaries are also
low energy and obey Read-
Shockley

e The 211 symmetric <110> tilt
boundary with [311] planes is
anomalously low in energy

¢ Other symmetric <110> tilt
boundaries vary widely

 Large spread in energy for the >3
grain boundaries

 The spread of “random”
boundary energies is large -
almost a factor of 2
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Grain boundary mobility has been determined by the
application of an external driving force

Possible external driving forces HREINE
— Strain SRR R

* Relies on elastic anisotropy which produces differing
strain energy densities in the two crystals

* Not applicable for all boundaries

¥/
.
— Synthetic Driving Forces I s
 Artificial potential and corresponding forces added to v S A
the system which favors growth of one grain i, Reih
 The magnitude of the driving force is a method
parameter

— Important to find the low driving force limit
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Zhang, Mendelev & Srolovitz,
Acta Mater. 52, 2569 (2004)
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Synthetic driving force has been developed that

conserves energy
* Discontinuity-free orientation measure

based on local diffraction condition
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Mobility methods have been compared for a specific
boundary and potential
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* Reference grain boundary and
potential

— 25[0 1 0] asymmetric tilt boundary o g
with (10 7)and (1 0 1) boundary
planes

— Ackland et al. EAM potential for Ni

* 3 methods yield values for :
mobility that agree within error A

(b) Atomistic view of the grain boundary plane at 0 K. Atom colors correspond to local atomic
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Figure 6. Temperature dependence of the GB mobility.
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Computational Detail: Test shows that synthetic

driving force has minimal effect on barriers

* Nudged elastic band calculations of the barriers for the
motion of a large-angle [0 0 1] symmetric tilt boundary

— Synthetic driving force
— Shear driving force

* The path associated with the boundary motion and the
associated barriers are very close
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Case studies of boundary motion mechanisms

 Though Arrhenius behavior of
the mobility with temperature
is the conventional wisdom, the

survey revealed existence of 200}
boundaries which defy this ol
assumption !

40

 Three grain boundaries with
different temperature
dependence of mobility

— Roughly Arrhenius
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Arrhenius boundary (#348) moves by a
comp_l_gx shuffle

® > [1251]

* Color coding: FCC, Other
* Note that atom “6” moves normal to the plane and out of the projected

slice
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Athermal boundary appears to move by a step
process
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Athermal 27 boundary moves by the local
rotation of atoms in the common (111) plane
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e Coloring by microrotation
— Star s a fiduciary marker

 Note that 27 boundaries have a common (111) plane
— Motion occurs by rotation of an array of hexagons
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e This mechanism may explain the observed high mobility of 27 boundaries
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Mechanically induced grain growth — over a wide temperature
range - has been recognized for decades
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Plastic strain-induced boundary » S .
migration in deformed Al, observed Elastic stress-induced, reversible low-angle
during annealing at 350°C. grain boundary migration in Zn bicrystals at
* Driving force is direct removal of -196°C and 375°C.
stored dislocations by boundary  Driving force is relief of elastic stress via
sweeping. grain boundary dislocation motion.

Beck and Sperry, J. Appl. Phys. 21 (1950) 150. Bainbridge, Li, and Edwards, Acta Metall. 2 (1954) 322.
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Mechanically-induced grain growth limits the fatigue life of

nanocrystalline metals.

* During fatigue tests of nanocrystalline alloys, failure is
always observed to initiate at colonies of very large

grains.
* These abnormal grains develop during fatigue testing.
* Room temperature
* Nominally elastic
* High Schmid factor grains
* In the absence of large grains, the material does not
fail.

U.S. DEPARTMENT OF Office of
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Computational Methodology — Initial State

« Thin film (X/Y periodicity, free surface in Z)
« 3D Voronoi tessellation followed by thermal anneal
* Pre-anneal: ~4nm grain size
* Random orientations
* (53 nm)3 containing about 13 million atoms
« Thermal equilibration at 1175 K (0.75 T,,) for 0.2 ns
 Thermal grain growth yields
» half the number of initial grains
» equilibrates triple junctions
» Ni EAM potential (Foiles et al. 2006)

R=15 nm spherical indenter
Indenter modeled by repulsive potential

Constant velocity indentation:

« 0.2 m/s, 1.0 m/s, and 5.0 m/s
Three phases:

* Indentation

 Hold

 Withdrawal of indenter.

N
°

wm FCC
== HCP .
mm Other (Defects/GBs)
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Computational Methodology — Indentation History
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* R=15 nm spherical indenter
* Indenter modeled by repulsive potential

* Indentation force shows a modest rate
dependence during indentation
* Force largest for fastest indent

Constant velocity indentation:
* 0.2m/s, 1.0 m/s, and 5.0 m/s

« The normalized relaxation rate during the * Three phases:
‘hold’ and 'lift’ phases is approximately * Indentation
identical for all three indentation rates. « Hold
» During the hold and relaxation, the « Withdrawal of indenter.

force only depends on indenter depth
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Analysis can track evolution of grain boundary area
and the motion of grains
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Combination of analysis methods reveals
the dislocation and twin boundary evolution

« Utilize neighbor lists and computed metrics to determine atomic slip and
local neighborhood.
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Both dislocation slip and twin boundary density evolution
occur during the indentation

How do we quantify the relative
importance of these mechanisms?
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Microscale Kinematic Metric Formulation reveals local deformation modes

Reference Current

Continuum Atomistic Continuum Atomistic

Deformation Gradient

n
— af yaf
where Wins = sz X
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* Zimmerman et al., 1JSS (2009) e i = 52:1 XI XM
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* Tucker et al., MSMSE (2010)

. 1o
Green Strain E-_(F-F-I) and [, (E)=tr(E)

* Tucker et al., JMPS (2012)
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Strain Accommodation is Localized to Interfaces and Dislocations

Deformation Gradient Tensor onj = wf‘M (7704)]7411

Green Strain Tensor F = %(FT -F—1)

 tr(E) from all atoms in a phase (e.g. FCC, GB, Dislocation)
added together.
» Strain accommodation from Interface plasticity is substantial FCC Atoms
» Some relaxation during release
 Dislocation plasticity is roughly rate-independent and does not
relax during release
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Summary

 MD simulations have been used to explore the variation of
properties of planar grain boundaries over geometry and
temperature
— Trends in properties are being quantified
— Significant numbers of boundaries don’t conform to conventional wisdom

 MD simulations of nanocrystalline deformation reveal the interplay
between conventional dislocation mechanisms and boundary
deformation

— Significant simulation post-processing and concepts from continuum
mechanics required to quantify the relative importance of different
mechanisms

 Now you must answer the most important question of the day
— RED or GREEN!
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